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Abstract
Cooperation within a competitive social situation is nat-
ural part of human social life. This requires knowledge
of teams and goals as well as an ability to infer the
intentions of both teammates and opponents in order
to coordinate or best respond respectively. We develop
a model that jointly cooperates with teammates in or-
der to compete against another team. In cooperating,
agents can either assume teammates are as intelligent
as themselves and plan with joint intentions, or assume
that teammates are at lower levels like opponents are.
We test predictions of this model in behavioral experi-
ments using video-game like environments and then ex-
ploring augmentations to the model and environments
for future work.

Introduction
From seeking promotions at a company to fighting over
crayons in kindergarten, the social world involves com-
petition amongst individuals. However social situations
are not limited to competing against individuals and
frequently involve cooperation with others to compete
against other teams. These situations occur even early in
childhood, in games like Tag or Keepaway. In these team
games especially without explicit communication, coop-
eration doesn’t emerge in a single moment but rather
over the course of many actions. Individuals first have
to identify friendly agents in uncertain situations and
then demonstrate an intention to be teammates. Even
after teams are known, humans still have to develop and
execute detailed joint plans of action while inferring the
plans of teammates[1].

Evaluating others is an essential skill in the social
world. While we may make quick initial evaluations
from physical features [2, 3, 4], we also make judgments
about the friendliness of others based on their actions
[5]. Hamlin et al found that 6- and 10- month old in-
fants prefer individuals who help others to ones who hin-
der others, showing that even from an early age humans
form abstractions about helpfulness and prefer individ-
uals who help to individuals who hinder. This ability
to infer someone’s intentions from actions is called The-
ory of Mind [6], which humans use even at a young age
to infer higher level concepts like goals [7, 8]. Baker et
al., constructed models that probabilistically represent
agents’ desires and beliefs based on observing actions
[9].

After observing other agents as friendly, it still isn’t
necessarily in our best interests to immediately seek to
cooperate with them. One reason cooperation arises is
multilevel selection[10], the idea that cooperation is due
to cooperative groups being able to outcompete non-
cooperative individuals[11]. If seeking to cooperate in a

competitive situation, individuals have to form joint in-
tentions and demonstrate the plan to teammates. This
natural instinct to infer and evaluate social plans appears
starting in early childhood[12, 13]. Children not only in-
fer the goals of other agents but also execute complex
plans to cooperate with others. In this work we aim to
construct cooperative models that plan and coordinate
like humans in competitive situations.

Naturalistic Games
We build games in naturalistic spatial environments that
people play like video-games. This allows for intuitive
emergence of actions following plans in order to reach
strategic goals. These spatial environments are grids
where players control individual agents. Simple grids like
Figure 1 are a useful way to represent a variety of games
since people intuitively orient themselves spatially and
so form complex plans almost without any other knowl-
edge.

In this work, we examine a single round of Tag between
one team of two players and one team of one player. Each
player controls the movement of one of the colored cir-
cles throughout the course of the game. On each turn
players choose to move their circles into adjacent squares
(not diagonal) or stay in the same spot. All players se-
lect an action during the same turn and all positions are
updated simultaneously. If there are collisions between
teammates they remain in the same place, while any col-
lision between opposing players (moving into the same
square, moving into each other’s squares, or one player
moving into a stationary player’s square) counts as a tag
and the end of the game.

After every turn the team that is “It” loses 1 point
while the team being chased gains 1 point. Once the
chasing team catches a single player the “It” team re-
ceives 10 points, the team being chased loses 10 points,
and the game ends. As a result the game is zero sum
with respect to teams. This structure is heavily based
on games built by Kleiman-Weiner et al[14].

Model
Social Planning
We build a model of strategic planning that can form
joint intentions assuming equally intelligent teammates,
or varied lower levels of intelligence for other players.
Agents know of the existence of teammates and share
the rewards with them. At every step, agents select their
action with a plan formulated under a presumption of
each other player’s intelligence. This model-based learn-



Figure 1: An example 3x3 state with three players.

ing generalizes well with multiple players as well as in
new environments.

This work builds on classical formalisms of intention
and joint planning from AI literature[15, 16] in addi-
tion to traditional reinforcement learning techniques[17].
Models in previous work do not handle uncertainty in a
probabilistic way and so struggle with predictions about
behavior.

Following the notation of De Cote and Littman[18],
we construct stochastic games representing different chil-
dren’s games. A three-player stochastic game is repre-
sented as 〈S, s0, A1, A2, A3, T, U1, U2, U3, γ〉 where S is
the set of all possible states with s0 ∈ S as the starting
state. If assuming equal intelligence, each agent chooses
from a set of actions Aa × Ab constituting the joint ac-
tions of the team. Otherwise, an agent selects an action
from its set of actions Aa. A state transition function
T (s, a1, a2, a3) = P (s′|s, a1, a2, a3) represents likelihoods
of moving to new states given states and individual ac-
tions from agents. Reward for an individual player i is
given as Ui. Additionally 0 ≤ γgame ≤ 1 is a discount
rate of reward.

We define agents as attempting to maximize their joint
utility, assuming other agents are doing the same. To
represent this game-theoretic best response, we use the
level-K formalism used in behavioral game theory with
regards to the policies used by both teams[19, 20]. In a
two-player game a level-K agent best responds to a level-
(K-1) agent, which results in a level-0 agent. In our mod-
els, the level-0 agent is a randomly acting agent. This
seems reasonable since the environment doesn’t have
specified goals, only to survive.

Joint Planning
If agents assume their teammates are at the same level
they are in, the optimal action comes from treating the
team as a single-agent[21]. As a result, they can con-
struct level-K rollouts to identify the best team-action
before marginalizing the actions of their teammate to
identify their individual best action.

Accordingly, a randomly moving level-0 agent for a
team with players i and j would have equal probability

for any legal joint action for both players.

P (aiaj |s, k = 0) = π0
i (s) ∝ expβQ

0
i (s,aiaj)

Q0
i (s, aiaj) = 0

With a level-0 agent defined, a level-k agent for players
i and j on a team against player h on an opposing team
can be recursively constructed in terms of lower levels.

P (aiaj |s, k) = πG(s, aiaj) = expβQ
(
ik)(s,aiaj)

Qki (s, aiaj) =
∑
s′

P (s′|s, aiaj)

(U(s′, aiaj , s) + γmax
a′ia

′
j

Qki (s
′, a′ia

′
j)

P (s′|s, aiaj) =
∑
ah

P (s′|s, aiaj , ah)P (ah|s, k = k − 1)

Here, player h is treated as part of the environment and
so is described within P (s′|s, aiaj). The maximization
operator allows the joint agent to build the best-response
to the level-(K-1) agent. Clearly this could be expanded
to teams of any-sized n players against teams of similarly
any-sized m players.

With a policy defined for the joint actions for a
team by underlying Qki (s, aiaj), a single agent i on the
team can marginalize out the actions of its teammate.
πGi (s, ai) =

∑
aj
πG(s, aiaj) and similarly for player j.

These individual policies contain intertwined intentions
that include an expectation for the teammate to reach
certain states. This is a meshing of plans that is a
key component of joint and shared intentionality[22, 23].
Crucially, agents here assume teammates are at the same
level K they themselves are at.

Individual Planning
Agents can also assume teammates are at different levels
than the ones they themselves are in. Notably, reward
is still given if teammates achieve the goal. For this
experiment, we assume all other agents are at level-(K-
1).

A randomly moving level-0 agent then for player i only
includes actions ai.

P (ai|s, k = 0) = π0
i (s) ∝ expβQ

0
i (s,ai)

Q0
i (s, ai) = 0

Thus, an agent i doing individual planning at level-K
with teammate j and opponent k constructs its policy
with

P (ai|s, k) = π(s, ai) = expβQ
(
ik)(s,ai)

Qki (s, ai) =
∑
s′

P (s′|s, ai)(U(s′, ai, ajs)+γmax
a′i

Qki (s
′, a′i))



P (s′|s, ai) =
∑
aj ,ah

P (s′|s, aiaj , ah)P (aj |s, k = k − 1)

P (ah|s, k = k − 1)

The assumption that a teammate is one level lower is
one that could be developed over time. In the future
an optimal agent could infer the K-levels of other agents
based on their actions over the course of the game and
adjust to them. In our experiments, we utilized values of
K-1 for both teammates and opponents and tested the
self K to be either 1 or 2. This means agents expect all
other players to be moving randomly, or best responds
to an agent expecting everybody else to be moving ran-
domly.

Behavioral Experiments
We constructed seven game states and asked 20 partici-
pants to pick where they would go in the next move as
each player. Participants were given instructions that
detailed the purpose of the game, goals of each player,
scoring system, and dynamics of the environment. After
seeing the state, participants were asked to select one of
Left,Right, Up,Down, Stay as the next move for player
1, 2, and 3.

In comparing model predictions with human behavior,
we tallied the count of each movement for each player
for the state. We then created red heatmaps where each
square’s color intensity is proportional to the ratio of
the movement count to all movements – the more people
that chose a movement the redder the square that would
be moved to. We also visualized the softmax policies for
each model, with the probability of moving to a square
determining the redness of that square.

Figure 2 shows the results of one model with indi-
vidual planning and one model with joint planning. The
individual model assumes it is level K=1, which assumes
all other players are K=0. The joint model operates as-
suming the team is level K=1 and the opponent is level
K=0. Globally we observe that both models capture the
human data well, almost fully capturing the range of hu-
man decisions and generally capturing the distribution
across actions as well. For all models we used a relatively
high softmax β value of 7, as well as a γ discount rate of
0.9.

Between models, we note that the individual model
places higher likelihood on the move it thinks is most
optimal while the joint model places a small probabil-
ity on moves that the human data shows. This can be
seen more distinctly in the fourth row. Since our current
model only does value iteration and state sizes grow ex-
ponentially as the board becomes larger, it was difficult
to compute level K=2 heatmaps for all starting states.
However, when conducting the experiment the most in-
teresting human behavior was in starting state 2 (row
2); we will describe it in more detail as well as explore
heatmaps for level K=2 models.

Human Ranges of K-Levels

We identified that K=1 models did not accurately cap-
ture the human sentiment to move down for player 2 in
state 2 and built a level K=2 model to see if it was more
accurate, shown in Figure 3.

For Player 1, both joint and individual models at level
K=2 accurately captured the human intuition to move
down or stay still. This intuitively makes sense since
player 2 closes off the middle square.

Player 2 has the most diverse set of possibilities out
of all squares shown. Human data shows participants
equally preferred staying still, moving right, and mov-
ing down. Both level K=1 models strongly preferred
moving right and slightly staying still, reflecting their
understanding that player 3 moves randomly. However
level K=2 models roughly equally weight staying still
and moving down and place no weight on moving right.
This captures the other human responses shown previ-
ously, which expect that player 1 will move down and
prevent player 3 from escaping by moving left. It ap-
pears that different participants considered player 3 to
be at different intelligence levels. Interviewed after their
selections, participants who elected to move down said
they didn’t believe player 3 would be smart enough to
move left. This would reflect a belief that player 3 is a
level 1 agent.

Human data for Player 3 was almost entirely Down,
with only two participants selecting Left. Similar to
Player 2 this reflected the fact that most humans were
thinking at a Level 2. However some participants se-
lected Left, signifying that they were at Level 3. This
would hope for Player 2 to move down, allowing Player
3 to escape through the middle.

It appears that humans operate as either level 2 and
level 3 models. This decision may either reflect their
ability to imagine steps ahead, a bias to underestimate
the opponents, or a lack of time. Participants expressed
an interest in playing out more moves in order to feel out
other players’ intentions. Some participants also said the
more states they saw the less thought they tended to put
into them due to the high initial cost of imagining sce-
narios. For future work it would be useful to explore
the play of individuals over an entire game. This would
allow us to more concretely identify what level individ-
uals were playing at, as well as allow them to be more
invested and accurate in their moves. The immediate
feedback would be helpful in engaging participants.

We notice that humans never assumed opponents were
moving randomly or that they were static. Most people
projected what their possible range of actions were as
opponents and did a best-response to that. However,
humans interviewed said that they couldn’t trust team-
mates to operate at the same level they were. This lack
of trust in teammates was due to the zero-shot nature of
the experiment, where humans weren’t given any infor-



Figure 2: Participant tendencies and model tendencies at given states. Each row represents data starting from the
state in column 1. The next three columns represent likelihoods of moving to particular squares for players 1, 2, and
3. Within each column, the top row represents human data. The left square on the bottom row is a model at K=1
assuming all others are at K=0. The right square is a model at K=1 assuming a teammate of K=1 and opponent of
K=0.



Figure 3: A level K=2 model’s predictions for next moves
in game 2.

mation about the other players. Upon observing moves,
we hypothesize that humans are likely to gain trust in
a teammate if they follow the joint policy at their own
level-K. Notably a player might not gain trust in their
teammate if the teammate’s policy is a level-(K+1) since
it might not be understood.

We note that a level-K policy only operates well in
response to a level-(K-1) policy. Using Figure 3’s state
again, a level K=2 player two might move down with
60% probability which could allow a level-0 random
player the opening to escape into the middle square.
This is a key result from Wako Yoshida’s Game Theory
of Mind[24].

Future Work
Calibrating Models
Even when knowing teammates and goals, individuals
have many parameters to infer in order to successfully ac-
complish these goals. The most important one identified
is how intelligent one’s partner is (previously mentioned
as K level). Agents could be augmented to dynamically
infer partner’s K-levels and adapt their policies over the
course of the game instead of fixing policies throughout
the game. This same inference of K-level and adapta-
tion could apply for opponents as well. A parallel for
this might be having prior beliefs of opponents’ intelli-
gence or abilities from seeing them before and slightly
modifying them based on observations during the game.
A random level 0 agent also might not be the most ac-
curate base model for some games, and can be changed
depending on the environment and reward structure.

Optimizations to Planning
Since the state and action spaces grow exponentially
with more players and larger boards, simple value it-
eration to calculate policies becomes intractable as a so-
lution. For this experiment we were limited to board
sizes of 4x4, and even those were frustratingly slow. We

are considering using variants of TD learning such as
Sarsa[17] to improve this speed. Other avenues might in-
clude Deep Q-Learning[25], which would be well-suited
to our games due to the grid-world. Further, our current
method calculates the full optimal policy for every state
and every action, but we only need the best step from
the state we are currently in. Many states are never seen
and as a result we shouldn’t need to calculate it. We also
consider using Real-Time Dynamic Programming[26] for
its efficiency in solving MDPs.

Other Games
In addition to this single round of Tag where the game
ends upon catching an opponent, we will create other
grid-world based games to explore human tendencies
as well as our model’s ability to model them. Grid
worlds allow us to explore children’s games well, so our
plan is to model Tag (where It transfers upon being
tagged), Freeze Tag (where It stays constant but players
are frozen when tagged), Keepaway (where an object is
being kept away from the other team) or a Lemonade
Stand type game. Rewards are fundamentally different
between these games – Tag and Keepaway involve a tem-
poral reward that Freeze Tag and Lemonade Stand in-
herently don’t, Tag has shifting team coalitions based
on which players are It while Keepaway and Freeze Tag
have established teams throughout. These simple varia-
tions lead to fundamental changes in individual behavior
as well as team plans.

In addition to games with full knowledge, we could
implement variations with limited visibility. Agents next
to blocked squares may be unable to view where other
players are due to an inability to view the rest of the
board, and agents far away might not be aware of other
players’ exact locations or even existence. These uncer-
tainties could be included in the models by averaging
expected locations of agents around swaths of area, or
have agents’ locations be entirely unknown.

Inferring Teammates
In this experiment we played games where teammates
were known, but it’s possible to be in situations where
teammates are not known or can change. We are in-
terested in constructing models that can not only plan
competitive joint policies with known teammates but can
also infer what players are on the team.

A naive solution to this might be to construct policies
for every possible team an agent could be on. Upon ob-
servation of actions, the agent can determine which con-
structed policy most resembles those actions. This could
probabilistically update a posterior over which team the
agent thinks it’s on, which determines what policy it im-
plements.

In addition to only observing actions, agents might
update their priors on teams based on game situation.
This reflects the fact that humans form teams not only



based on loyalty but also based on environment. As an
example, if we were playing Keepaway I might pass to
you if you’re far away and move to more open space so
that we retain the object for longer.

Symbolically this might be represented as

P (Tm|aiajak) ∝ P (aiajak|Tm)P (Tm)

where ai, aj , ak are actions from all players i j k and
P (Tm) is the probability the agent is on team m. Here
the prior P (Tm) might all start as equal values across
all teams, but could also be varied due to the world sit-
uation. P (aiajak|Tm) then could retrieved by indexing
into the policies of the agent if it were on team m.

Establishing a Team

Teammates could be unknown, but there might be situa-
tions where agents don’t know if they even need a team.
We can consider this as the level above inferring team-
mates. This step would establish if one needs a team
as well as who else should be on the team, and could be
considered as creation of the priors P (Tm) as well as con-
struction of the variations of Tm. Further, agents could
create long-term plans of forming and breaking alliances
as well as potentially breaking up other alliances.

Here agents can also establish their norms when inter-
acting with other players, since people don’t solely seek
to maximize reward. Individuals in real life may aim to
maximize their own utility over others, even when par-
ticipating in a team. In these children’s games players
may aim to be alive the longest in Freeze Tag or keep
the object longest in Keepaway, sometimes for pride or
reputation. This could cause them to join with players
of roughly equal ability, or with many players of lower
ability. Other norms for forming teams could emerge like
ganging up against a heavy favorite to overthrow them
or joining up with one in order to win, as well as showing
mercy.

Demonstrating Teamwork

Having established that one needs a team and the players
one would prefer on it, agents need some way to demon-
strate this cooperative intent. There are fundamental
differences to active cooperative intentions and lack of
malicious ones that may be difficult for other players to
realize, especially humans. Additionally if other agents
are far away or unaware of one’s own existence, the agent
may have to move into their view to broadcast their in-
tention. In order for this to closely mirror human intu-
ition and best enable our model to cooperate with hu-
mans we may need to collect data on how humans infer
intention from actions. This data could be used to train
models in a model-free way or to inspire abstractions in
model-based methods.

Discussion
In this work we constructed models that coordinate team
plans with teammates in order to compete against other
teams in a grid-based game of Tag. We compare the
expected likelihoods for actions at given states for the
model against human data and find that models at K=1
and K=2 fully cover the range of responses given. We
note that joint planning is noisier than individual plan-
ning for K=1 as well as faster to calculate. While we
were only able to construct results for low levels of K,
with optimizations to our planning algorithm we expect
to construct similar diagrams for higher K levels.

This work sets a strong framework around which we
can explore abstractions to team-building dynamics in a
variety of children’s games. We hope to build the ability
for AI agents in any multi-agent scenario where teams
and goals are unknown to build coalitions and maxi-
mize reward in ways that humans intuitively do end-to-
end. We are particularly interested in how models can
learn norms at the team-formation level – humans can
be altruistic[27], seek to collaborate with winners, but
also can be drawn to the underdog[28]. How do these
norms develop over time, and how can they be recon-
ciled with concepts of loyalty? We aim to discover this
in a model-based way through augmenting models with
abstractions, as well as in model-free ways by learning
from human data.
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