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ABSTRACT 

Rap lyric generation is a task that natural 
language processing has yet to solve. Due to 
constraints such as rhyme and meter, a 
traditional bag of words or n-gram model does 
not model the necessary dependencies. We 
instead propose a ​Long Short Term Memory 
(LSTM) recurrent neural net (RNN) trained on a 
corpus of rap lyrics, where words are 
decomposed into phonemes. By training the 
RNN on a phoneme level, we find that rhymes 
are more easily learned. We also explore 
different padding techniques when training in 
order to adhere more closely to the length and 
meter of the training data. Using metrics that 
assess rhyme and flow, we find that though 
unable to match actual lyrics, our model was 
competitive with existing methods. 

1. INTRODUCTION/MOTIVATION 

We propose a natural language processing 
system to generate coherent rap lyrics that 
adhere to general standards of rhyme and ​flow​ . 
We define flow as the ability of the lyrics to 
adhere to rhythm and meter. We expect that by 
training our model on rappers with differing 
flows and vocabularies, we will be able to 
produce raps of differing natures.  
 
The architecture of our language model is a 
character-level Recurrent Neural Network (RNN), 
which has seen success in replicating the styles 
of distinct corpuses​[1][2]​. A token-level model 
passes in a token as a prompt, and samples 
from the resulting distribution over next tokens. 

We build on this by translating words from our 
lyric corpus into a sequence of ​phonemes​ . 
Phonemes are the building blocks of the English 
language. We reason that deconstructing a word 
into phonemes as opposed to characters would 
allow the model to more easily learn rhyme and 
flow. In addition, we use bucketing and padding 
to augment the training process. 
 
We also work with Generative Adversarial 
Networks (GANs)​[3]​. GANs train a generative 
model through a discriminative model that 
receives lyrics from the generative model and 
real lyrics from our data set. The discriminator 
attempts to distinguish between real and 
generated verses. By backpropagating the 
discriminator’s output through the lyric 
generator, our expectation is that the 
generator’s output would be more similar to real 
lyrics. 
 
For evaluation we measure rhyme through vowel 
phoneme similarity; we evaluate rhyming within 
each line and at the end of lines. We also 
examine line lengths to measure flow. These 
metrics are similar to those used by Malmi et al., 
which we will expand on in the next section as 
well as section 4. 
 

2. RELATED WORK 

The use of RNNs for language modeling is well 
documented​[2][5][6][7]​. The papers mentioned use 
RNNs to generate text character by character. 
Both Graves and Karpathy have demonstrated 
success with the character-level LSTM 
architecture in learning correct spelling of a 
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variety of English words as well as grammatical 
and punctuation rules. They also demonstrate 
success in various domains, such as 
Shakespeare texts, XML, and Linux source 
code. LSTMs are able to reproduce text that 
follows syntactic rules in each of these domains 
(e.g. semicolons at ends of lines in code) with 
remarkable success. 

Language modeling in the context of poetry and 
song lyrics has been explored mainly using large 
corpuses and heavy constraints​[8][9][10]​. In the 
context of rap lyrics, Wu et al. (2013) have had 
success modeling the problem of rap lyric 
generation as a machine translation problem, 
learning a system that generates rhyming 
response lines given an input line. Malmi et al. 
(2015) generate 16-line hip hop verses by using 
a prediction model to select the best next line 
from a sample of candidate lines from existing 
lyrics. Both of these approaches differ from ours 
in that they generate lyrics at the line level, while 
our model attempts to generate text from more 
granular phonetic building blocks. However, 
Malmi et al. have developed a useful metric of 
rhyme density​ , which we also use in the 
evaluation of the quality of our generated lyrics.  

Our approach is similar to that of Potash et al. 
2015, which uses a character-level LSTM to 
generate rap lyrics. We use an implementation 
of Potash’s model as our baseline. 

As far as we are aware, our approach is the first 
to use phonemes as inputs in language 
modeling. While phonemes have been used in 
the context of rhyme detection​[13]​, we are unable 
to find any literature that generates text encoded 
as phonemes. 

 

 

 

3. APPROACH 

3.1. DATA 
 
Our corpus of rap lyric data is pulled from 
Genius.com. Hoping to capture an artist’s 
specific style, we choose to use the corpus of 
only one rapper’s lyrics to train our model. For 
examples shown, the model is trained on 
Eminem’s song lyrics data which results in a 
corpus of 58,405 lines of text.  In order to 
improve training of rhymes we preprocess the 
input by only including series of rhyming 
couplets. Preprocessing also involves removing 
choruses (as these are present in rap songs but 
are not in the style of rap) and lines with less 
than two words. This results in our final training 
corpus of Eminem lyrics being 11,648 lines, or 
228,318 tokens.  
 
3.2. LSTM 
 
While we describe our model as an RNN, the 
model is actually a ​Long Short Term Memory 
(LSTM) model. In practice, vanilla RNNs of​ten fail 
to model long-term dependencies​[15]​, giving rise to 
LSTMs which maintain the recurrent property o​f 
RNNs, but use multiple linear weight 
combinations and activations to determine state 
and output. 
 
Originally proposed by Hochreiter et al., the 
LSTM cell has a state monitored by 3 gates 
(forget gate, input gate, and output gate), where 
each gate passes a concatenation of the input 
and previous state through a series of sigmoids 
and activation functions to determine what state 
to forget, what input to consider, and what state 
to output. 
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Fig 1. Each LSTM cell has an input, output, and forget gate, which are controlled 
by weights, biases and a sigmoid function. Training each of these values 
separately allows for longer term dependencies to be modeled/ 
 

In figure 1​[16]​, we observe that the state evolves 
via many non-linear transformations, which 
allow an LSTM to model longer-term 
dependencies than a traditional RNN. For 
example, we start by combining the previous 
state with an activation of the previous state and 
input, f​t​: 
 

 (W [h , ] ) f t = σ t t−1 xt + bt  
 
A similar transformation happens at all three 
gates, where both the weights and the bias are 
trained via backpropagation. This complexity 
allows LSTMs to model longer dependencies 
compared to traditional RNNs. 
 
3.2.1. BASELINE 
 
Our baseline model is an implementation of 
Andrej Karpathy’s character level RNN as 
described above. Due to the success of 
Karpathy’s model on various data sets we 
expect to generate sentences with proper 
spelling and grammatical structure when trained 
on a corpus of rap lyrics. Potash et. al. apply a 
similar model with an LSTM for rap lyric 
generation, also based off Karpathy’s work. We 
view Karpathy’s work as a valid baseline as it is 
a successful text generation model but is not 

particularly tailored for rap lyric generation, 
especially rhyme generation. 
 
3.2.2. PHONEME MODIFICATIONS 

 
Fig 2. ​Architecture takes a phoneme, retrieves the embedding, passes through 
LSTM, then computes softmax. LSTM and embedding values are trained via 
backpropagation. 
 

While we expect our baseline character-level 
RNN to produce lyrics that are semantically 
meaningful over short sequences of characters 
(one to three words), we expect little to no 
rhyme. We explain this behavior by looking at 
phonetic irregularity in the English language. If 
we consider the following line from Kanye 
West’s ​Ultralight Beam​ : 
 
You can feel the lyrics, the spirit coming in ​braille 
Tubman of the underground, come and follow the ​trail 
 

we see that ‘braille’ and ‘trail’ are dissimilar on a 
character level, even though they rhyme.  
 
To resolve this issue, we propose the novel 
approach of a ​phoneme-level​  RNN. A phoneme 
is a unit of speech that comprises the 
fundamental sound of language. Using the CMU 
Pronunciation Dictionary, which operates on 83 
phonemes and maps 133,000 words to 
sequences of phonemes, we decompose our 
lyric corpus entirely into phonemes. Using this 
model, when we look at the phonemes for the 
same words: 
  

BRAILLE: B-R-EY1-L 
TRAIL: T-R-EY1-L 
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we see similarity on a phoneme basis. 
Therefore, by decomposing words into 
phonemes, we are ideally able to bypass the 
idiosyncrasies of written language since a model 
would consistently see rhyme on a phoneme 
level. Rhymes are observed through 
phoneme-vowel similarity -- when two words’ 
are identical starting at the ​stressed ​ vowel (EY1) 
to the end of the word (EY1-L). 
 
One issue we anticipate is that a sequence of 
phonemes outputted may not map to a word, or 
perhaps unintentionally map to an obscure 
word. However, analogous to character level 
RNNs producing words, we find that with 
sufficient training, almost all generated phoneme 
sequences map to phoneme sequences seen in 
training (i.e. relevant words). We again use the 
CMU Pronunciation Dictionary to map back to 
words.  
 
A critical aspect of the phoneme 
sequence-to-word mapping is dealing with 
overloaded phoneme sequences i.e. 
homophones. For example, consider two 
English words: 
 

YOU: Y-UW1 
YUE: Y-UW1 

 
In this case, ‘you’ is much more common that 
‘yue.’ We resolve these collisions by using a list 
of the 20,000 most common words​[20]​ to prefer 
the most common one. In the case that no 
translation is within the 20,000 most common 
words, we randomly select one of the suggested 
ones. 
 
Finally, we accommodate for slang in rap lyrics, 
completing words ending with “-in” with “-ing” 
(i.e. “fallin’” and “falling”). 
 

 
 
 
 
3.2.3. CHARACTER GENERATION 
 
When sampling a character from the softmax 
output of an LSTM, many sampling techniques 
exist. Selecting the highest probability token 
produces repetitive output while sampling from 
the distribution can be occasionally nonsensical. 
To resolve this, we select the highest probability 
token with some probability ​P ​ and sample from 
the distribution with probability​ 1-P 
 
When training the LSTM, sequence length was 
also important. Sequence length is the number 
of phonemes we backpropagate to, denoting 
the range of previous phonemes a next 
phoneme learns from. When generating output, 
we begin with a prompt character and use the 
sampling method described above over some 
number of time steps i.e. 500 tokens. We then 
take these phoneme sequences and map them 
back to words using the CMU Pronunciation 
Dictionary. 
 
3.2.4. OTHER MODIFICATIONS 
 
Because meter and rhythm are essential for 
proper rap lyrics, we experiment with different 
techniques that work with length of lines. In 
particular, we evaluate implementations of 
padding/bucketing, backward input, and input 
splicing. 
 
Padding the input consists of selecting a 
maximum line length (including phonemes and 
spaces), and adding ​<PAD>​ tokens until all lines 
reach the maximum length. The benefit of 
padding is that a sequence that takes in twice 
the maximum line length would include exactly 
one couplet. Without padding, arbitrary sections 
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of couplets are trained at once, which could 
cause us to potentially miss the end of line 
rhyming relationship between rhymes and the 
newline character. The newline character is 
essential because it always follows a rhyming 
word. One pitfall of padding is the disparity 
between the longest line in a corpus and the 
median line length, in which case padding is 
excessive. To resolve this, we implement 
bucketing, which places lines of similar length in 
the same batch to standardize the padding over 
one gradient descent step.  Padding and 
bucketing do not offer any significant 
advantages, most likely because of the model’s 
inability to learn long-term dependencies over 
multiple newline characters. 
 
Noting the relationship between final syllables 
and newline characters, we also train our model 
on a reversed corpus and expect the model to 
learn the immediate dependence between the 
newline and the preceding rhyme. We find that 
this method improves inter-line rhyme and 
end-of-line rhyme. 
 
Finally, we slice our inputs to fixed-size inputs. 
We find that slicing each input line ​n​  tokens from 
the last (newline) token improves our 
performance by making the relationship 
between rhyming phonemes more consistent. 
 
3.3. GAN 

 
Fig 3. Architecture for GAN in which a softmax distribution is passed from a 
generator to a discriminator.  
 

Having learned about Goodfellow’s success with 
Generative Adversarial Networks (GANs) in 

vision​[3]​, we hoped to utilize a similar architecture 
to learn semantic and syntactic features of an 
artist’s style.  
 
A GAN reframes the training process as a game, 
pitting a generative and a discriminative network 
against each other. In Goodfellow’s original 
usage to generate images similar to the real 
world, the generative model produces an image, 
while the discriminative model tries to classify if 
inputs are from the true original distribution or 
the distribution from the generated image. The 
discriminative model adjusts both its and the 
generative model’s weights in order to have the 
generator mimic the true data distribution, such 
that the generative model produces similar 
images to the dataset.  
 
We hypothesize that a discriminative network 
accepting one real and one generated couplet 
with appropriate labels would help guide a 
generative network trained on a specific artist to 
produce similar lyrics. We plan an architecture 
using our modified LSTM for our generative 
model, and a convolutional neural network for 
text classification as our discriminative model.  
 
We leverage the work of Amos​[17]​ to help 
connect our existing LSTM to our discriminator 
and have our generator output a couplet instead 
of an image. Phonemes are generated by 
sampling from the softmax distribution of the 
next predicted phoneme, and appending until 
we find two new line tokens.  
 
Unfortunately, we discover that the act of 
generating characters eliminates the ability to 
backpropagate the predictions from the 
discriminative network as discrete samples of a 
distribution broke the ability to evaluate 
gradients. Passing the distribution from the 
generative model is also not helpful, as the 
distribution is the likelihoods of single characters 
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and would not guide learning of the structure of 
couplets.  
 

 
4. RESULTS 
 
4.1. SAMPLE LYRICS 

 
Fig 4. 7 couplets generated from a model trained with a batch size of 10 and sequence 

length of 100. Sampling done from a full distribution. 

 
We find that qualitatively that not only do ends 
of lines rhyme, as “be” and “chee” do in the final 
two lines, but also a fair number of internal 
rhymes are apparent, such as “lesser” and 
“better” in lines 2 and 3. However, we note that 
semantic meaning is low, as a phoneme-level 
LSTM also suffers from the inability to track 
long-term dependencies.  
 
4.2. EVALUATION METRICS 
 
In order to quantify the effectiveness of our 
models we define multiple evaluation metrics. 
We develop the following four metrics to 
measure the technical quality of a generated 
verse. 
 
4.2.1: Couplet Rhyme Percent (CRP): 
 

   #lines
#rhyming couplets  

 

CRP is a metric to gauge the end-of-line rhyme 
scheme in a verse. An ideal ratio of 0.5 would 
signify that the entire verse is composed of 
rhyming couplets, with an AABBCC… structure.  
 
 
 
 
4.2.2: Internal Density (ID):  
 

 # syllables
# syllables involved in rhymes  

 

ID is a way to measure the presence  
of internal rhymes which showcase a lyricist’s 
overall rhyme frequency. An ideal ratio of 1 
would indicate every syllable is involved in a 
rhyme. 
 
4.2.3: Rhyme Density (RD): 
 

 #words
avg. len. of best per word 

  

 

RD is a metric originally devised by Malmi et. al. 
who use it as a way to measure the rhyme 
complexity of a verse​[4]​. For each word in the 
verse the max. number of vowel syllables 
involved in a rhyme is calculated and this is 
averaged over all words. When measured on 
real rap verses RDs of around 1 have been 
found so an RD of 1 is an ideal goal for 
generation.  
 
4.2.4​  ​Flow Irregularity (FI):  
 

(# words in line)  σ  
 

Raps need to have similar line lengths for them 
to be easily spoken (‘flow’)  so this metric helps 
quantify that. A low FI would indicate a low 
standard deviation in the line lengths which 
would indicate nearly even line lengths 
throughout, the goal of generation. 
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4.3. DISCUSSION 
 
In order to evaluate the quality of our lyrics, we 
sample outputs from our model with various 
parameters and compare the output’s 
performance on the previously defined metrics 
to the performance of the baseline model’s 
output as well as the performance of real rap 
lyrics. For each of these categories, we pick 4 
text samples. For real rap lyrics, we pick random 
verses by Andre 3000, Eminem, Kanye West, 
and Kendrick Lamar. For the baseline model, we 
generate 500 tokens of text with sequence 
length parameters of 25, 50, 75, and 100. For 
our model, we generate 500 tokens of text with 
sequence length parameters of 20, 70, 90, and 
100. The average performance of the 4 samples 
in each category on the metrics is depicted in 
Figure 4. We note that our model is competitive 
with both the real verses and baseline in CRP, 
ID, and RD, while outperforming real verses in 
FI. 
  
Our model has an average couplet rhyme 
percentage of 12.6%, which improves on the 
8.0% CRP of the baseline model, while falling 
short of the 22.6% CRP of the actual rap lyrics. 
Our model’s internal density and rhyme density 
measures are also comparable to the baseline. 
We believe that our model performs well on the 
rhyming tasks because of the previously 
mentioned ability of phonemes to encode 
rhyming structure that characters cannot. 
 
Our model also outperforms the baseline in flow 
irregularity- a lower value indicates that different 
lines have similar numbers of words and thus 
follow some sort of rhythmic structure. We 
believe this is due in part to the phonetic 
encoding, but also because of our practice of 
splicing inputs discussed in section 3.2.2. 
Overall, we are impressed with the ability of our 

model to both produce words through phonetic 
features and perform competitively in 
comparison to the baseline and real rap lyrics. 

 
Fig 4. ​Our model’s performance on the defined metrics in comparison to the 
baseline character-level model and real verses. Each bar represents an average of 
the metric on 4 sample verses. The blue bars represent average performance of 
real verses from Eminem, Kendrick Lamar, Kanye West, and Andre 3000. The red 
bars represent average performance of 4 versions of the baseline char-level LSTM 
(with sequence lengths of 25, 50, 75, and 100). The yellow bars represent the 
average performance of 4 versions of our model (with sequence lengths of 20, 70, 
90, and 100).  
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5. MEMBER CONTRIBUTIONS  
 
aanand: I worked mainly on refining the LSTM 
model and optimizing its performance. I ran 
through the training and sampling process with 
various parameters of batching, sequence 
length, and temperature. I also implemented the 
padding, bucketing, and masking of the inputs 
to allow our model to account for the variability 
of input sequences. I made the input clipping 
and reversal modifications in order to improve 
LSTM performance. 
 
advaith: I spent my time working on the LSTM 
model and on pre-processing and evaluating the 
inputs and outputs, respectively. Most of the 
work that was spent on the LSTM was on trying 
to understand existing implementations and 
understanding which parameters could be tuned 
and how various current approaches could 
possibly be modified to introduce rhyming and 
structure into outputs. After working with the 
LSTMs we realized we needed to further 
preprocess our training data so I wrote a 
function to remove lines which weren’t part of 
rhyming couplets to improve the rhyme metrics 
of our input. In addition I worked on developing 
the metrics to quantify the successes of different 
approaches. I wrote a function to do this which 
helped us understand where our model was 
successful and where it was less-so.  
 
jitesh: I spent most of my time working on GANs 
and the word-to-phoneme tokenization for the 
RNN. Interfacing with the CMU Pronunciation 
Dictionary was straightforward, though due to 
the complications, I handled some edge cases 
related to slang in rap lyrics and homophone 
phonetics collisions by using word frequency. I 
also modified our character-level RNN to 
tokenize by phoneme instead of character. 
Working with GANs consisted of reading about 

existing success (mostly vision applications i.e. 
Amos), and using Tensorflow to define 
backpropagation between the discriminative and 
generative models. Determining an input to the 
GAN was also something we spent time 
researching, such as feature vectors vs direct 
text, as well as the architecture of the 
discriminator, which we eventually chose to be a 
convolutional neural network. Though the GAN 
was not part of our final implementation, it was 
still a significant part of our research. 
 
mshum: I worked primarily on GANs, 
data-gathering, and cross-evaluation of 
parameters for the LSTM. I read recent GAN 
papers related to vision and explored 
implementations from various blog posts (r2rt, 
Amos). From this testing I learned and explained 
how TensorFlow creates RNN models, graphs, 
and sessions, as well as how GANs connect 
their generative and discriminative models. I 
then implemented our proposed GAN 
architecture, modifying an existing one to use 
our generator and a discriminator for text 
classification. We spent time researching and 
testing inputs (word/phoneme pre-trained 
embeddings/one-hot vectors) to our generative 
model. Data gathering involved scraping 
webpages manually with BeautifulSoup due to a 
lack of an API for lyrics from genius.com. Finally, 
for cross-evaluation of parameters I composed 
bash scripts to generate phoneme-level lyrics, 
translate these into words, and finally run metric 
calculations on them.  
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