

Rap Lyric Generation: A Phoneme-Based LSTM Approach
Advaith Anand, Aneesh Anand, Jitesh Maiyuran, Michael Shum

{advaith, aanand, jitesh, mshum} @mit.edu

ABSTRACT

Rap lyric generation is a task that natural
language processing has yet to solve. Due to
constraints such as rhyme and meter, a
traditional bag of words or n-gram model does
not model the necessary dependencies. We
instead propose a ​Long Short Term Memory
(LSTM) recurrent neural net (RNN) trained on a
corpus of rap lyrics, where words are
decomposed into phonemes. By training the
RNN on a phoneme level, we find that rhymes
are more easily learned. We also explore
different padding techniques when training in
order to adhere more closely to the length and
meter of the training data. Using metrics that
assess rhyme and flow, we find that though
unable to match actual lyrics, our model was
competitive with existing methods.

1. INTRODUCTION/MOTIVATION

We propose a natural language processing
system to generate coherent rap lyrics that
adhere to general standards of rhyme and ​flow​ .
We define flow as the ability of the lyrics to
adhere to rhythm and meter. We expect that by
training our model on rappers with differing
flows and vocabularies, we will be able to
produce raps of differing natures.

The architecture of our language model is a
character-level Recurrent Neural Network (RNN),
which has seen success in replicating the styles
of distinct corpuses​[1][2]​. A token-level model
passes in a token as a prompt, and samples
from the resulting distribution over next tokens.

We build on this by translating words from our
lyric corpus into a sequence of ​phonemes​ .
Phonemes are the building blocks of the English
language. We reason that deconstructing a word
into phonemes as opposed to characters would
allow the model to more easily learn rhyme and
flow. In addition, we use bucketing and padding
to augment the training process.

We also work with Generative Adversarial
Networks (GANs)​[3]​. GANs train a generative
model through a discriminative model that
receives lyrics from the generative model and
real lyrics from our data set. The discriminator
attempts to distinguish between real and
generated verses. By backpropagating the
discriminator’s output through the lyric
generator, our expectation is that the
generator’s output would be more similar to real
lyrics.

For evaluation we measure rhyme through vowel
phoneme similarity; we evaluate rhyming within
each line and at the end of lines. We also
examine line lengths to measure flow. These
metrics are similar to those used by Malmi et al.,
which we will expand on in the next section as
well as section 4.

2. RELATED WORK

The use of RNNs for language modeling is well
documented​[2][5][6][7]​. The papers mentioned use
RNNs to generate text character by character.
Both Graves and Karpathy have demonstrated
success with the character-level LSTM
architecture in learning correct spelling of a

1

variety of English words as well as grammatical
and punctuation rules. They also demonstrate
success in various domains, such as
Shakespeare texts, XML, and Linux source
code. LSTMs are able to reproduce text that
follows syntactic rules in each of these domains
(e.g. semicolons at ends of lines in code) with
remarkable success.

Language modeling in the context of poetry and
song lyrics has been explored mainly using large
corpuses and heavy constraints​[8][9][10]​. In the
context of rap lyrics, Wu et al. (2013) have had
success modeling the problem of rap lyric
generation as a machine translation problem,
learning a system that generates rhyming
response lines given an input line. Malmi et al.
(2015) generate 16-line hip hop verses by using
a prediction model to select the best next line
from a sample of candidate lines from existing
lyrics. Both of these approaches differ from ours
in that they generate lyrics at the line level, while
our model attempts to generate text from more
granular phonetic building blocks. However,
Malmi et al. have developed a useful metric of
rhyme density​ , which we also use in the
evaluation of the quality of our generated lyrics.

Our approach is similar to that of Potash et al.
2015, which uses a character-level LSTM to
generate rap lyrics. We use an implementation
of Potash’s model as our baseline.

As far as we are aware, our approach is the first
to use phonemes as inputs in language
modeling. While phonemes have been used in
the context of rhyme detection​[13]​, we are unable
to find any literature that generates text encoded
as phonemes.

3. APPROACH

3.1. DATA

Our corpus of rap lyric data is pulled from
Genius.com. Hoping to capture an artist’s
specific style, we choose to use the corpus of
only one rapper’s lyrics to train our model. For
examples shown, the model is trained on
Eminem’s song lyrics data which results in a
corpus of 58,405 lines of text. In order to
improve training of rhymes we preprocess the
input by only including series of rhyming
couplets. Preprocessing also involves removing
choruses (as these are present in rap songs but
are not in the style of rap) and lines with less
than two words. This results in our final training
corpus of Eminem lyrics being 11,648 lines, or
228,318 tokens.

3.2. LSTM

While we describe our model as an RNN, the
model is actually a ​Long Short Term Memory
(LSTM) model. In practice, vanilla RNNs of​ten fail
to model long-term dependencies​[15]​, giving rise to
LSTMs which maintain the recurrent property o​f
RNNs, but use multiple linear weight
combinations and activations to determine state
and output.

Originally proposed by Hochreiter et al., the
LSTM cell has a state monitored by 3 gates
(forget gate, input gate, and output gate), where
each gate passes a concatenation of the input
and previous state through a series of sigmoids
and activation functions to determine what state
to forget, what input to consider, and what state
to output.

2

Fig 1. Each LSTM cell has an input, output, and forget gate, which are controlled
by weights, biases and a sigmoid function. Training each of these values
separately allows for longer term dependencies to be modeled/

In figure 1​[16]​, we observe that the state evolves
via many non-linear transformations, which
allow an LSTM to model longer-term
dependencies than a traditional RNN. For
example, we start by combining the previous
state with an activation of the previous state and
input, f​t​:

 (W [h ,]) f t = σ t t−1 xt + bt

A similar transformation happens at all three
gates, where both the weights and the bias are
trained via backpropagation. This complexity
allows LSTMs to model longer dependencies
compared to traditional RNNs.

3.2.1. BASELINE

Our baseline model is an implementation of
Andrej Karpathy’s character level RNN as
described above. Due to the success of
Karpathy’s model on various data sets we
expect to generate sentences with proper
spelling and grammatical structure when trained
on a corpus of rap lyrics. Potash et. al. apply a
similar model with an LSTM for rap lyric
generation, also based off Karpathy’s work. We
view Karpathy’s work as a valid baseline as it is
a successful text generation model but is not

particularly tailored for rap lyric generation,
especially rhyme generation.

3.2.2. PHONEME MODIFICATIONS

Fig 2. ​Architecture takes a phoneme, retrieves the embedding, passes through
LSTM, then computes softmax. LSTM and embedding values are trained via
backpropagation.

While we expect our baseline character-level
RNN to produce lyrics that are semantically
meaningful over short sequences of characters
(one to three words), we expect little to no
rhyme. We explain this behavior by looking at
phonetic irregularity in the English language. If
we consider the following line from Kanye
West’s ​Ultralight Beam​ :

You can feel the lyrics, the spirit coming in ​braille
Tubman of the underground, come and follow the ​trail

we see that ‘braille’ and ‘trail’ are dissimilar on a
character level, even though they rhyme.

To resolve this issue, we propose the novel
approach of a ​phoneme-level​ RNN. A phoneme
is a unit of speech that comprises the
fundamental sound of language. Using the CMU
Pronunciation Dictionary, which operates on 83
phonemes and maps 133,000 words to
sequences of phonemes, we decompose our
lyric corpus entirely into phonemes. Using this
model, when we look at the phonemes for the
same words:

BRAILLE: B-R-EY1-L
TRAIL: T-R-EY1-L

3

we see similarity on a phoneme basis.
Therefore, by decomposing words into
phonemes, we are ideally able to bypass the
idiosyncrasies of written language since a model
would consistently see rhyme on a phoneme
level. Rhymes are observed through
phoneme-vowel similarity -- when two words’
are identical starting at the ​stressed ​ vowel (EY1)
to the end of the word (EY1-L).

One issue we anticipate is that a sequence of
phonemes outputted may not map to a word, or
perhaps unintentionally map to an obscure
word. However, analogous to character level
RNNs producing words, we find that with
sufficient training, almost all generated phoneme
sequences map to phoneme sequences seen in
training (i.e. relevant words). We again use the
CMU Pronunciation Dictionary to map back to
words.

A critical aspect of the phoneme
sequence-to-word mapping is dealing with
overloaded phoneme sequences i.e.
homophones. For example, consider two
English words:

YOU: Y-UW1
YUE: Y-UW1

In this case, ‘you’ is much more common that
‘yue.’ We resolve these collisions by using a list
of the 20,000 most common words​[20]​ to prefer
the most common one. In the case that no
translation is within the 20,000 most common
words, we randomly select one of the suggested
ones.

Finally, we accommodate for slang in rap lyrics,
completing words ending with “-in” with “-ing”
(i.e. “fallin’” and “falling”).

3.2.3. CHARACTER GENERATION

When sampling a character from the softmax
output of an LSTM, many sampling techniques
exist. Selecting the highest probability token
produces repetitive output while sampling from
the distribution can be occasionally nonsensical.
To resolve this, we select the highest probability
token with some probability ​P ​ and sample from
the distribution with probability​ 1-P

When training the LSTM, sequence length was
also important. Sequence length is the number
of phonemes we backpropagate to, denoting
the range of previous phonemes a next
phoneme learns from. When generating output,
we begin with a prompt character and use the
sampling method described above over some
number of time steps i.e. 500 tokens. We then
take these phoneme sequences and map them
back to words using the CMU Pronunciation
Dictionary.

3.2.4. OTHER MODIFICATIONS

Because meter and rhythm are essential for
proper rap lyrics, we experiment with different
techniques that work with length of lines. In
particular, we evaluate implementations of
padding/bucketing, backward input, and input
splicing.

Padding the input consists of selecting a
maximum line length (including phonemes and
spaces), and adding ​<PAD>​ tokens until all lines
reach the maximum length. The benefit of
padding is that a sequence that takes in twice
the maximum line length would include exactly
one couplet. Without padding, arbitrary sections

4

of couplets are trained at once, which could
cause us to potentially miss the end of line
rhyming relationship between rhymes and the
newline character. The newline character is
essential because it always follows a rhyming
word. One pitfall of padding is the disparity
between the longest line in a corpus and the
median line length, in which case padding is
excessive. To resolve this, we implement
bucketing, which places lines of similar length in
the same batch to standardize the padding over
one gradient descent step. Padding and
bucketing do not offer any significant
advantages, most likely because of the model’s
inability to learn long-term dependencies over
multiple newline characters.

Noting the relationship between final syllables
and newline characters, we also train our model
on a reversed corpus and expect the model to
learn the immediate dependence between the
newline and the preceding rhyme. We find that
this method improves inter-line rhyme and
end-of-line rhyme.

Finally, we slice our inputs to fixed-size inputs.
We find that slicing each input line ​n​ tokens from
the last (newline) token improves our
performance by making the relationship
between rhyming phonemes more consistent.

3.3. GAN

Fig 3. Architecture for GAN in which a softmax distribution is passed from a
generator to a discriminator.

Having learned about Goodfellow’s success with
Generative Adversarial Networks (GANs) in

vision​[3]​, we hoped to utilize a similar architecture
to learn semantic and syntactic features of an
artist’s style.

A GAN reframes the training process as a game,
pitting a generative and a discriminative network
against each other. In Goodfellow’s original
usage to generate images similar to the real
world, the generative model produces an image,
while the discriminative model tries to classify if
inputs are from the true original distribution or
the distribution from the generated image. The
discriminative model adjusts both its and the
generative model’s weights in order to have the
generator mimic the true data distribution, such
that the generative model produces similar
images to the dataset.

We hypothesize that a discriminative network
accepting one real and one generated couplet
with appropriate labels would help guide a
generative network trained on a specific artist to
produce similar lyrics. We plan an architecture
using our modified LSTM for our generative
model, and a convolutional neural network for
text classification as our discriminative model.

We leverage the work of Amos​[17]​ to help
connect our existing LSTM to our discriminator
and have our generator output a couplet instead
of an image. Phonemes are generated by
sampling from the softmax distribution of the
next predicted phoneme, and appending until
we find two new line tokens.

Unfortunately, we discover that the act of
generating characters eliminates the ability to
backpropagate the predictions from the
discriminative network as discrete samples of a
distribution broke the ability to evaluate
gradients. Passing the distribution from the
generative model is also not helpful, as the
distribution is the likelihoods of single characters

5

and would not guide learning of the structure of
couplets.

4. RESULTS

4.1. SAMPLE LYRICS

Fig 4. 7 couplets generated from a model trained with a batch size of 10 and sequence

length of 100. Sampling done from a full distribution.

We find that qualitatively that not only do ends
of lines rhyme, as “be” and “chee” do in the final
two lines, but also a fair number of internal
rhymes are apparent, such as “lesser” and
“better” in lines 2 and 3. However, we note that
semantic meaning is low, as a phoneme-level
LSTM also suffers from the inability to track
long-term dependencies.

4.2. EVALUATION METRICS

In order to quantify the effectiveness of our
models we define multiple evaluation metrics.
We develop the following four metrics to
measure the technical quality of a generated
verse.

4.2.1: Couplet Rhyme Percent (CRP):

 #lines
#rhyming couplets

CRP is a metric to gauge the end-of-line rhyme
scheme in a verse. An ideal ratio of 0.5 would
signify that the entire verse is composed of
rhyming couplets, with an AABBCC… structure.

4.2.2: Internal Density (ID):

 # syllables
syllables involved in rhymes

ID is a way to measure the presence
of internal rhymes which showcase a lyricist’s
overall rhyme frequency. An ideal ratio of 1
would indicate every syllable is involved in a
rhyme.

4.2.3: Rhyme Density (RD):

 #words
avg. len. of best per word

RD is a metric originally devised by Malmi et. al.
who use it as a way to measure the rhyme
complexity of a verse​[4]​. For each word in the
verse the max. number of vowel syllables
involved in a rhyme is calculated and this is
averaged over all words. When measured on
real rap verses RDs of around 1 have been
found so an RD of 1 is an ideal goal for
generation.

4.2.4​ ​Flow Irregularity (FI):

(# words in line) σ

Raps need to have similar line lengths for them
to be easily spoken (‘flow’) so this metric helps
quantify that. A low FI would indicate a low
standard deviation in the line lengths which
would indicate nearly even line lengths
throughout, the goal of generation.

6

4.3. DISCUSSION

In order to evaluate the quality of our lyrics, we
sample outputs from our model with various
parameters and compare the output’s
performance on the previously defined metrics
to the performance of the baseline model’s
output as well as the performance of real rap
lyrics. For each of these categories, we pick 4
text samples. For real rap lyrics, we pick random
verses by Andre 3000, Eminem, Kanye West,
and Kendrick Lamar. For the baseline model, we
generate 500 tokens of text with sequence
length parameters of 25, 50, 75, and 100. For
our model, we generate 500 tokens of text with
sequence length parameters of 20, 70, 90, and
100. The average performance of the 4 samples
in each category on the metrics is depicted in
Figure 4. We note that our model is competitive
with both the real verses and baseline in CRP,
ID, and RD, while outperforming real verses in
FI.

Our model has an average couplet rhyme
percentage of 12.6%, which improves on the
8.0% CRP of the baseline model, while falling
short of the 22.6% CRP of the actual rap lyrics.
Our model’s internal density and rhyme density
measures are also comparable to the baseline.
We believe that our model performs well on the
rhyming tasks because of the previously
mentioned ability of phonemes to encode
rhyming structure that characters cannot.

Our model also outperforms the baseline in flow
irregularity- a lower value indicates that different
lines have similar numbers of words and thus
follow some sort of rhythmic structure. We
believe this is due in part to the phonetic
encoding, but also because of our practice of
splicing inputs discussed in section 3.2.2.
Overall, we are impressed with the ability of our

model to both produce words through phonetic
features and perform competitively in
comparison to the baseline and real rap lyrics.

Fig 4. ​Our model’s performance on the defined metrics in comparison to the
baseline character-level model and real verses. Each bar represents an average of
the metric on 4 sample verses. The blue bars represent average performance of
real verses from Eminem, Kendrick Lamar, Kanye West, and Andre 3000. The red
bars represent average performance of 4 versions of the baseline char-level LSTM
(with sequence lengths of 25, 50, 75, and 100). The yellow bars represent the
average performance of 4 versions of our model (with sequence lengths of 20, 70,
90, and 100).

7

5. MEMBER CONTRIBUTIONS

aanand: I worked mainly on refining the LSTM
model and optimizing its performance. I ran
through the training and sampling process with
various parameters of batching, sequence
length, and temperature. I also implemented the
padding, bucketing, and masking of the inputs
to allow our model to account for the variability
of input sequences. I made the input clipping
and reversal modifications in order to improve
LSTM performance.

advaith: I spent my time working on the LSTM
model and on pre-processing and evaluating the
inputs and outputs, respectively. Most of the
work that was spent on the LSTM was on trying
to understand existing implementations and
understanding which parameters could be tuned
and how various current approaches could
possibly be modified to introduce rhyming and
structure into outputs. After working with the
LSTMs we realized we needed to further
preprocess our training data so I wrote a
function to remove lines which weren’t part of
rhyming couplets to improve the rhyme metrics
of our input. In addition I worked on developing
the metrics to quantify the successes of different
approaches. I wrote a function to do this which
helped us understand where our model was
successful and where it was less-so.

jitesh: I spent most of my time working on GANs
and the word-to-phoneme tokenization for the
RNN. Interfacing with the CMU Pronunciation
Dictionary was straightforward, though due to
the complications, I handled some edge cases
related to slang in rap lyrics and homophone
phonetics collisions by using word frequency. I
also modified our character-level RNN to
tokenize by phoneme instead of character.
Working with GANs consisted of reading about

existing success (mostly vision applications i.e.
Amos), and using Tensorflow to define
backpropagation between the discriminative and
generative models. Determining an input to the
GAN was also something we spent time
researching, such as feature vectors vs direct
text, as well as the architecture of the
discriminator, which we eventually chose to be a
convolutional neural network. Though the GAN
was not part of our final implementation, it was
still a significant part of our research.

mshum: I worked primarily on GANs,
data-gathering, and cross-evaluation of
parameters for the LSTM. I read recent GAN
papers related to vision and explored
implementations from various blog posts (r2rt,
Amos). From this testing I learned and explained
how TensorFlow creates RNN models, graphs,
and sessions, as well as how GANs connect
their generative and discriminative models. I
then implemented our proposed GAN
architecture, modifying an existing one to use
our generator and a discriminator for text
classification. We spent time researching and
testing inputs (word/phoneme pre-trained
embeddings/one-hot vectors) to our generative
model. Data gathering involved scraping
webpages manually with BeautifulSoup due to a
lack of an API for lyrics from genius.com. Finally,
for cross-evaluation of parameters I composed
bash scripts to generate phoneme-level lyrics,
translate these into words, and finally run metric
calculations on them.

8

6. REFERENCES

1. Graves, Alex. "Generating sequences with
recurrent neural networks." arXiv preprint
arXiv:1308.0850 (2013).

2. Karpathy, Andrej. "The Unreasonable
Effectiveness of Recurrent Neural
Networks." The Unreasonable
Effectiveness of Recurrent Neural
Networks. N.p., 21 May 2015. Web. 10
Dec. 2016.

3. Goodfellow, Ian, et al. "Generative
adversarial nets." Advances in Neural
Information Processing Systems. 2014.

4. Malmi, Eric, et al. "Dopelearning: A
computational approach to rap lyrics
generation." arXiv preprint
arXiv:1505.04771 (2015).

5. Sutskever, Ilya, James Martens, and
Geoffrey E. Hinton. "Generating text with
recurrent neural networks." Proceedings of
the 28th International Conference on
Machine Learning (ICML-11). 2011.

6. Graves, Alex.​ "Generating sequences with
recurrent neural networks." arXiv preprint
arXiv:1308.0850 (2013).

7. Mikolov, Tomas, et al. "Efficient estimation
of word representations in vector space."
arXiv preprint arXiv:1301.3781 (2013).

8. Colton, Simon, Jacob Goodwin, and Tony
Veale. "Full face poetry generation."
Proceedings of the Third International
Conference on Computational Creativity.
2012.

9. Toivanen, Jukka M., Matti Järvisalo, and
Hannu Toivonen. "Harnessing constraint
programming for poetry composition."
Proceedings of the Fourth International
Conference on Computational Creativity.
2013.

10. Das, Amitava, and Björn Gambäck. "Poetic
machine: Computational creativity for
automatic poetry generation in bengali."

5th international conference on
computational creativity, ICCC. 2014.

11. Wu, Dekai, Karteek Addanki, and Markus
Saers. "Modeling hip hop
challenge-response lyrics as machine
translation." 14th Machine Translation
Summit (MT Summit XIV) (2013).

12. Potash, Peter, Alexey Romanov, and Anna
Rumshisky. "GhostWriter: Using an LSTM
for Automatic Rap Lyric Generation."

13. Hirjee, Hussein, and Daniel G. Brown.
"Rhyme Analyzer: An Analysis Tool for
Rap Lyrics." Proceedings of the 11th
International Society for Music Information
Retrieval Conference. 2010.

14. Hochreiter, Sepp, and Jürgen
Schmidhuber. "Long short-term memory."
Neural computation 9.8 (1997):
1735-1780.

15. Bengio, Yoshua, Patrice Simard, and
Paolo Frasconi. "Learning long-term
dependencies with gradient descent is
difficult." IEEE transactions on neural
networks 5.2 (1994): 157-166.

16. "Understanding LSTM Networks."
Understanding LSTM Networks -- Colah's
Blog. Chris Olah, n.d. Web. 14 Dec. 2016.

17. Amos, Brandon. "Image Completion with
Deep Learning in TensorFlow." Image
Completion with Deep Learning in
TensorFlow. N.p., 9 Aug. 2016. Web. 10
Dec. 2016.

18. Britz, Denny. "Implementing a CNN for
Text Classification in TensorFlow."
WildML. N.p., 04 Feb. 2016. Web. 10 Dec.
2016.

19. u/MartianTomato "Recurrent Neural
Networks in Tensorflow III - Variable
Length Sequences - R2RT." R2RT Full
Atom. N.p., 15 Nov. 2016. Web. 10 Dec.
2016.

20. https://github.com/first20hours/google-100
00-english

9

